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Collisional removal of 02 (c l_u, v=9) by 02, N2, and He
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The collisional removal of O 2 molecules in selected vibrational levels of the c l_ u state is studied

using a two-laser double-resonance technique. The output of the first laser excites the O 2 to v=9 or

10 of the c 1E_- state, and the ultraviolet output of the second laser monitors specific rovibrational
levels via resonance-enhanced ionization. The temporal evolution of the c 1_- state vibrational

levet is observed by scanning the time delay between the two pulsed lasers. Collisional removal rate

constants for c 1_ u, v=9 colliding with 02, N2, and He are (5.2+0.6)× 10 -12, (3.2+0.4)× 10 -12,

and (7.5+_0.9)×10 -12 cm 3 s-1, respectively. As the rate constants for 02 and N 2 are similar in

magnitude, N 2 collisions dominate the removal rate in the earth's atmosphere. For v= 10 colliding

with 02, we find a removal rate constant that is 2-5 times that for v=9 and that single quantum
collision cascade is an important pathway for removal. © 1996 American Institute of Physics.
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I. INTRODUCTION

When two oxygen atoms recombine in a collision with a

third body, a significant fraction of the formed oxygen mol-

ecules lie in one of the three ungerade electronic states near
the dissociation limit. 1 This cluster of two triplet states

(A 3 +_, ,A '3A,) and one singlet state (c 1_-) is often

called the Herzberg states of 02 because of his pioneering

work in their spectroscopy. 2 Their potential energy curves,

and those of other low-lying states of 02, are shown in Fig.

1. In this laboratory we have begun a comprehensive study

of collisional processes involving 02 molecules in the

Herzberg states, motivated by their importance to the night-

glow of planetary atmospheres. 3-6

In the earth's upper atmosphere (85-110 km), nightglow

emission in the ultraviolet and blue spectral regions is ob-

served from all three Herzberg states. These states, produced

by three-body recombination of oxygen atoms in the atmo-

sphere, are metastable: there are no allowed electronic tran-

sitions either among the Herzberg states, or from them to any

of the three lower-lying O 2 electronic states (b 1E_-, a lAg,

and X 3E_-). Because of their long radiative lifetimes, 7 col-

lisions play a dominant role in their emission intensities,

even though atmospheric pressures at the relevant altitudes
3 +

are low (about 1 mTorr at 100 km). The A E. -X 3_-

electronic transition (Herzberg I) is the dominant emission

from the Herzberg states in the earth's atmosphere, but the

c l_u-X 3_g (Herzberg II) and A '3Au-a lAg (Cham-
berlain) transitions have also been identified. 8 Currently,

identification of the A ' 3A u- X 3_ _- (Herzberg III) emission
in the earth's atmosphere is still tentative. 9'1° For all three

Herzberg states, emission originates from excited vibrational
levels, with the maximum emission intensity coming from
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3 + t3Au 'u=4-7, 5-8, and 5-10 for the A E,, A and the

C 1]_u states, respectively. 11

In sharp contrast to these terrestrial observations, the

Herzberg II system dominates the Herzberg state emission in
the Venusian nightglow, as observed by the Venera probe. 12

The upper state of the Herzberg II transition, c l_-, is the

lowest energy state of the three, and emission measurements

suggest that, not only does the Venusian atmosphere exhibit

a strikingly different distribution of the 02 Heriberg. state

populations, but emissions originate almost exclusively from
the u=0 levels. The CO2 atmosphere on Venus and the O2

and N 2 atmosphere on earth create very different spectral

signatures, while no 02 Herzberg state emission has been
observed on Mars. 12Clearly, the collisional environment is

critical to determining the spectral characteristics of the
emissions. To model these emissions, therefore, coUisional

rate constants are required for all the important colliders with

many of the excited vibrational levels in the Herzberg states.
Knowledge of the pathways for relaxation is also crucial to

understanding 02 and O atom emissions on earth and the
other planets. The c 1E u state, in particular, has been impli-

cated as a possible source for the O(IS) emission in the

earth's atmosphere. 13'14
Our earlier work focused on selected vibrational levels

3 +
of the A Eu state and measured removal rate constants for

the important atmospheric colliders. 3'4 A similar experimen-
tal approach is applied in this c ly_- state study. We use the

output of one laser to excite ground state 02 molecules via a
"forbidden" one-photon transition to a selected vibrational
level of the c 1E_- state, and then use the output of a second

laser to resonantly ionize only molecules in that excited vi-

brational level. By varying the time delay between the two

laser pulses, we obtain the temporal evolution of the excited

level. The strong bands of the c 1E u -X 3_g transition are
about 20 times weaker than those of the A 3E+-X 3E_-

transition, making the excitation more difficult than the pre-

viously studied A 3 +3'-. state. 7

The c 1E_- state has seldom been studied in the labora-

tory. The 1983 study of Kenner and Ogryzlo is the only
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FIG. 1. Potential energy diagram for the Herzberg and lower-lying states of

02.

previous laboratory study to extract quantitative rate con-

stants for the c IE_- state.15 Using a nickel surface to en-

hance the production of excited electronic states of 02 in a

microwave discharge flow tube, they extracted removal rate

constants for the lowest lying vibrational level with the col-

liders O(3P), 02 (alAg), 02, CO2, SF6, N20, He, and Ar. 15

These measurements are directly applicable to the atmo-

sphere of Venus, where emission from v=0 dominates, but

are less applicable to the terrestrial atmosphere, where emis-

sion from higher vibrational levels is important. In those ex-

periments, many excited electronic states were produced at

the Ni surface, and the accuracy of the measurements has

been questioned due to the possibility of cascading and other

complications. _6 Rate constants have also been extracted

from nightglow observations, 16-19 and have been consis-

tently much larger than those obtained from the laboratory

work of Kenner and Ogryzlo. 15 Clearly, more laboratory

work is needed to understand these discrepancies.

II. EXPERIMENTAL APPROACH AND RESULTS

In brief, ground-state 0 2 molecules are excited to spe-

cific ro-vibronic levels in the c 1_- state by direct, pulsed-

laser excitation in a room temperature flow cell containing

only 02, or 02 and a collision partner. A time-delayed sec-

ond pulsed laser monitors the temporal evolution of the ex-

cited molecules via a newly developed resonance-enhanced

ionization technique. We fit the signal intensity as a function

of time delay between the lasers, and by varying the 02 and

collider pressures, extract the total removal rate constant for

a specific vibrational level. A detailed description of the ex-

perimental apparatus can be found elsewhere; 4 here we focus

on the unique aspects of this investigation.

I t f I I =
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FIG. 2. 02 ion signal as a function of the wavelength of the ionization laser
light at an oxygen pressure of 15.5 Torr. The delay between the excitation
and ionization laser pulses is approximately 50 ns. The top curve, labeled
(a), shows the ion signal when the excitation laser light at 261.245 nm
populates the J=14, v=9 level of the c 1]_- state. The bottom curve, la-
beled (b), shows the ion signal when the light is tuned out of resonance with

the c J_-X 3]_g transition. The features in the bottom curve are due to
ionization of 02 molecules in the ground electronic state.

A. Resonance enhanced ionization probing of the

c 1_ u state

Key to our experimental approach is the development of

a pulsed laser method to specifically probe selected vibra-

tional levels of the c l_ u state. The fraction of c 1E u state

molecules that fluorescence under typical laboratory condi-

tions is so small that waiting for emission is not feasible.

Instead, a newly developed resonance-enhanced ionization
3 +

technique similar to that used for detection of the A 5_

state is the preferred approach. 3'4

Initially, we observed resonance-enhanced ionization

features of the c 1E_- state in an indirect manner, by exam-

ining the pathways for A 3 +Eu state removal. In these experi-
3 +

ments, we prepared O 2 molecules in the A _u v=8 level

and recorded the ionization spectrum at several delay times

between the excitation and probe laser pulses. We examined

the energy region below the 2+1 ionization threshold of

ground state O2(h>306 nm), thus avoiding the interference

of ionization from the ground state. After a long delay (270

ns at 22.5 Torr) between the laser pulses, several strong,

broad features appeared in the ionization spectrum. We as-

signed these features to 02 ionized out of vibrationally ex-

cited levels (v=9, 10, and 11) of the c l]_- state. To confirm

this identification, we excited O 2 directly to the c 1_ u state

thus demonstrating that these ionization features appeared

promptly and at the same photon energies, as in the initial

experiment described above.

Figures 2(a) and 3(a) show the ionization spectra follow-

ing excitation of the v=9 and 10 vibrational levels of the

c l_- state, respectively, on top of the background ioniza-

tion of 02 caused by the ionization laser alone. The energies

J. Chem. Phys., Vol. 105, No. 23, 15 December 1996
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FIG. 3. 02 ion signal as a function of the wavelength of the ionization laser

light at an oxygen pressure of 10.1 Torr. The delay between the excitation

and ionization laser pulses is approximately 45 ns. The top curve, labeled

(a), shows the ion signal when the excitation laser light at 257.137 nm

populates the J=6 and 10, v=10 levels of the c iX_- state. The bottom
curve, labeled (b), shows the ion signal when the light is tuned out of

resonance with the c _X,--X 3Xff transition. The features in the bottom

curve are due to ionization of 02 molecules in the ground electronic state.

for the Herzberg II transitions are well known, 2° so we can
be certain of the vibrational and rotational level or levels we

are populating with the excitation laser. Figures 2(b) and
3(b) are taken with the excitation laser off-resonance with

the c lE_- state or any other 02 Herzberg transition. They

show only a background ionization of ground-state 02 due to
the probe (ionization) laser. These spectra are independent of

the wavelength of the excitation laser and, in fact, are the
same even if the excitation laser is turned off. In these off-

resonance spectra, we see a broadband between 311 and 313

nm, assignable to ionization out of v= 1 of the ground elec-

tronic state by way of the lowest vibrational level of the first

Rydberg state, C 3IIg. At room temperature, about 0.04% of
02 molecules lie in the v= 1 level. This band is broad due to

predissociation in this Rydberg state vibrational level, 21 and

provides a good benchmark for the other features observed
below. The two sharp features near 313.4 and 313.9 nm in

Fig. 2(b) are not observed above the noise in Fig. 3(b), and

may be due to multiphoton ionizations that are extremely

power dependent. The three groupings between 314.5 and
316.5 nm are currently unidentified, but are reproducible

from spectrum to spectrum. These features are more sensi-
tive to the laser pulse energy than the band near 312 nm,

therefore, we conclude they are due to a process involving

more photons, perhaps a 3+ 1 ionization. A one-photon ab-

sorption spectrum of Oa shows many bands in this same
energy region, 22-24 and a three-photon transition can access
similar electronic states. However, in the recent absorption

work of England et ai.,24 the features they assign in this en-

ergy region do not correspond to those we measure here.

Thus, multiphoton features could be a direction for future

investigations of 02 Rydberg state spectroscopy.
In Fig. 2(a), new, strong features are observed at short

delay times when the v=9 level of the c 1_ u is populated.

Most significant are the two features near 312 and 312.7 nm.
These are much broader than the laser linewidth [which can

be estimated from the lines near 316 nm in Fig. 2(b)]. We

expect that the increased width is due to a predissociation in
the state that resonantly enhances the ionization. If this is

really ionization of v=9, then when we excite to v= 10 of the
c 12£u state, these features should move to longer wave-

lengths, if the same intermediate states are accessed. This

phenomenon is observed in Fig. 3(a). Although the relative
intensities change somewhat, the general structure of the ion-

ization features agree in both spectra, Fig. 2(a) and Fig. 3(a),

and the positions are redshifted in Fig. 3(a) by the spacing
between the v=9 and 10 levels of the c 1_- state. Thus, the

vibrational level origin of these features is verified even

though the exact assignment of the intermediate state has not
been established as yet. We can now use these features as a

"fingerplint" for detection of v=9 and 10, and for monitor-

ing their temporal evolution. Several subtle rotation-specific
effects of using these ionization paths will be presented in

the analysis of the time-dependent data.

B. The c l_u(V=9) removal measurements

The bulk of the time-dependent data is taken with exci-
tation to v=9, J=2, and 6 via the overlapped RQ(5) and

eQ(3) lines, followed by ionization at 312 nm. z° Typically
the data are obtained with 10 ns resolution near the peak of

the signal and with 40 ns resolution at longer time delays,
averaging 35 laser pulses at each delay. The pressure in the

system is kept constant during data acquisition. Data are ob-

tained by doing an on-resonance, off-resonance subtraction
under identical collision conditions. Typical experimental

data are shown in Fig. 4.
For the removal measurements with 02 as the collider,

we vary the pressure between 5 and 35 Torr. At high pres-
sures, we are limited by our ability to collect the ions. At low

pressures, the ionization background becomes more intense,
and diffusion out of the overlap region of the two laser

beams becomes significant. Initially, • we attempted to fit the

experimental data to a single exponential, as shown in Fig. 4

by the dashed line. Clearly, there are systematic differences
between the experimental data and the single exponential fit,

both at short and long delay times. The data appear to fall

more rapidly at small time delays, and the rate of decrease is
smaller at longer delay times when compared to the single

exponential approximation. This results in the single expo-
nential fit crossing the experimental data twice. The solid
line is a two-exponential fit to the data, which, naturally,

does a significantly better job than a single exponential at

approximating the dependence of the signal intensity on the

time delay between the two lasers. Systematic differences at

both short and long delays are significantly reduced. The
difference in the two exponential decay constants in the

double exponential fit is approximately a factor of 8 at 15

J. Chem. Phys., Vol. 105, No. 23, 15 December 1996
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FIG. 4. 0 2 v=9 ion signal as a function of delay between the two laser

pulses at 15 Torr. The diamonds are the experimental data points, the dashed

line is the best-fit single exponential decay, and the solid line is the best fit

using two exponentials.
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Torr. If we restrict the single exponential fit to longer delay
times (>0.3/xs), we obtain a decay constant value similar to

the value of the slower exponential from the double expo-

nential fit. We attribute the rapid exponential to rotational
equilibration out of the ionized rotational level in the c 1]_u

state, and the slower exponential to the removal of the rota-
tionally equilibrated excited vibrational level in the c 1_

state. Of course, the rotational equilibration process cannot
be assigned to a single exponential, but approximating it as

such is a convenient way to extract the slower exponential,

and has little effect on the magnitude of the slower exponen-
tial.

Several experimental tests examine the rotational equili-

bration process and demonstrate that the slow exponential is

indeed due to molecules leaving the rotational equilibrated
v=9 level. These experiments also help us to understand the

origin of the ionization spectra seen in Figs. 2 and 3. We
excite different rotational levels between N=2 and 18, and

monitor the relative magnitude of the fast and slow exponen-
tials from the double-exponential fit, along with any changes

in the slow exponential or the ionization spectrum. If this
double exponential is a rotational level effect, we expect the

relative contributions of the two exponentials to change, and

perhaps also the rate for the fast exponential, but the rate for

the slow exponential should remain constant. We find that
the relative contribution of the fast exponential increases as

we increase the rotational quantum number of the

c 12£,-(v=9) state, over the range of rotational levels given

above. In addition, the fast exponential decay rate increases
with increasing rotational level over this range. From these

observations, we conclude that in our removal experiments,
•we are ionizing out of high rotational levels in the c 1_ u

state, and the two-exponential behavior is consistent with a

transient overpopulation of the ionized rotational level as the

FIG. 5. Plot of the decay constant times pressure versus pressure squared for

0 2 (c 1]_-, ),=9) colliding with 0 2. The circles are the experimental data

and the solid line is the linear least squares fit to that data. The slope gives

the collisionat removal rate constant and the y intercept is an effective rate

for diffusion of the c i]_- molecules out of the observation region.

0 2 molecules move through it on the way to equilibrium. We

conclude that the ionization spectrum originates exclusively

from high rotational levels for both v=9 and 10. Only a few
selected rotational levels in the intermediate state live long

enough to act as a stepping stone to ionization, since the

entire vibrational band does not appear in the ionization
spectrum. This hypothesis is supported by the insensitivity of

the wavelength dependence of the ionization spectra in Figs.

2 and 3 to the specific excited rotational level. Further ex-

periments are under way to completely assign the rotational
level or levels resulting in ionization, and to identify the

intermediate state among several possible electronic states.

Figure 5 shows the data for collisional removal of
c 1_-(v=9) in pure O 2. The data are plotted as the product

of the decay constant for the slow exponential and the O2

pressure versus the O 2 pressure squared. A plot of this type is
required, since diffusion contributes significantly to the ob-

served signal decay at low pressures. The signal decay con-

stant can be approximated by

7.-l_--kP+D/p,

where _1 is the best-fit signal decay constant for the slow

exponential, P is the pressure of 0 2, k is the total vibrational
level removal rate constant, and D is an effective diffusion

constant for the experimental conditions. 4 The slope of Fig. 5

yields the rate constant for removal of the _,=9 level, and the

intercept yields the diffusion constant. The rate constant ex-

tracted from the slope is given in Table I, along with the

J. Chem. Phys., Vol. 105, No. 23, 15 December 1996
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TABLE I. Collisional removal rate constants, k, and thermally averaged
cross sections, o-, for the u=9 level of the c IE_ state.a

Collider k (cm3 s- i) o- (]kz)

02 (5.2-+0.6)× 10-12 0.83,+0.10

N2 (3.2_+0.4) × 10-12 0.49-+0.06
He (7.5 -+0.9) x 10-12 0.57-+0.07

aAll error estimates are two standard deviations.

thermally averaged collision cross section obtained by divid-

ing the rate constant by the average velocity• In Fig. 5, the

cluster of points near 1000 on the abscissa correspond to

exciting different rotational levels or probing different ion-

ization features• No statistically significant differences are

observed in the slow exponential decay constant by varying

these wavelengths. The diffusion constant, D, extracted from

the intercept is 9+-4/zs -1 Torr. This value is about a factor

of 3 larger than those obtained in previous studies of the

A 3 +Eu state of 0 2.4 This difference, perhaps due to a change

in laser beam geometry, does not have a large impact on the

magnitude of the rate constants. Neglecting diffusion, the

extracted rate constant decreases by less than 25%. The error

estimate (given in Table I) is two standard deviations of a

linear fit of the graph in Fig, 5, added in quadrature with a

10% error for the approximate diffusion correction.

Figure 6 shows the experimental values for the corrected

decay constant for the colliders N 2 and He versus collider

partial pressure• The points in the figure are extracted from

experimental data in which a mixture of 02 and the collider

flow through the cell. The partial pressures of the two com-

ponents are obtained by measuring the mass flow of each
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FIG. 6. Plots of the corrected decay constant versus pressure for collisions

of O2 (c i_,,, v=9) molecules with He and N 2. The squares are the He data
and the circles are the N2 data. The solid lines are linear least squares fits to

the experimental data.

species, separately and the total pressure• Knowing the par-

tial pressures of both O2 and the collider, together with the

value for the decay constant for the slow exponential from

the measured signal, we can remove the contribution due to

02 from the total decay constant. This contribution is calcu-

lated using the rate constant given for 02 in Table I. The

diffusion component is also subtracted, assuming that the

diffusion constant is the same as determined for pure 02.

This should be a good approximation for the N 2 collider, but

will be less accurate for He, where, fortunately, the diffusion

correction has a smaller influence. The values of the rate

constant, obtained from the slopes of the linear best-fit lines,

are given in Table I, along with the thermally averaged cross

sections• If we include no diffusion correction, the magni-

tude of the rate constants decreases by less than 10% for He

and less than 20% for N 2. The error estimates are two stan-

dard deviations of a linear fit to the data shown in Fig. 6,

added in quadrature with a 10% error for the approximate

diffusion correction. The extracted rate constant for He is the

largest of the three studied colliders, with 0 2 being interme-

diate and N 2 the smallest.

C. The c 1_(v=10) removal measurements

As shown in Fig• 3, we can probe the z,= 10 level of the

c z_ u state by increasing ionization laser wavelength, and

excite to v= 10 by increasing the photon energy of the exci-

tation laser light• We observe that, at the same pressure, the

signal for v= 10 decays significantly faster than does v=9.

This observation is independent of the ionization laser wave-

length, as shown by measurements on the 316•5, 317•1, and

317.8 nm features in Fig. 3(a). It also did not show a signifi-

cant dependence on the specific {otational level that was ex-

cited in v= 10. Just as in the v=9 case, our attempts to fit the

data are complicated by the same rotational equilibration ef-

fects. However, for v=10 with 02, the difference between

the rotational equilibration process and the removal of the

vibrational level is about a factor of 2 versus the factor of 8

observed for v=9. Because of the similarity in the rates of

the two processes, separation of the signal decay into rates

for the two energy transfer processes is difficult. In addition,

vibrational cascading, as shown in Fig. 7, can cause subtle

baseline effects in the data, due to ionization of molecules in

the v=9 level of the c t_- state at the wavelength that de-

tects primarily the v= 10 level. From the temporal evolution

of the data, we estimate that the v= 10 removal rate constant

is about a factor of 2-5 times greater than for v=9, with a

value between 3 and 4.5 times larger being the most likely.

Further experiments are under way to extract accurate, quan-

titative values• The available data conclusively show that the

rate constant does increase going from v=9 to 10.

Information on the v= 10 removal can be extracted either

from ionizing that level itself (as described above) or by

looking at the time dependence of the signal from the u=9

level. The top curve in Fig. 7 shows the v=9 ionization

signal following excitation of v=10. The bottom curve

shows the v=9 signal following v=9 excitation under the

same experimental conditions• The top curve clearly shows a

J. Chem. Phys., Vol. 105, No. 23, 15 December 1996
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FIG. 7. The v=9 ion signal as a function of time delay between the excita-

tion and ionization lasers following excitation of the v= 10 level (top) and

the v=9 level (bottom). The top curve has been multiplied by a factor of 3.

Both signals were obtained at 15 Torr of 02.

rise and a fall indicative of a vibrational cascade filling the

v=9 vibrational level from v=10. The fall of the signal on

exciting v= 10 is fit well by the rate for v=9 removal. The

solid lines show the fit to the experimental data, with the
v=9 removal rate fixed at the value that fits the bottom

curve. For this specific pressure, the rising exponential in the

top panel is approximately four times the value for v=9

removal in the bottom panel. From the relative intensities of

both signals, we conclude single quantum vibrational cas-
cade is a significant removal pathway (>20% for v=10).

Further work is under way to make this comparison quanti-

tative. Thus far, only collisions with 02 have been examined
for v=10.

III. DISCUSSION

Since our measurements are the first for the collisional

removal of 02 molecules in vibrationally excited levels of

the c 1_ u state, we cannot compare these results directly to

any other experimental investigation. The only previous en-

ergy transfer experiment on the c 1_- state was the surface
recombination study by Kenner and Ogryzlo, described in

Sec. I. They generated removal rate constants for the v=0

level with 0 2 and He, among other colliders. 15The collider

N 2 was not investigated. In Table II, we compare our rate
constants for v=9 and Kenner and Ogryzlo's 15 for v=0 of

the c 1E_ state, along with measurements from the A 3_+

state from Knutsen et al. 14Where a comparison can be made

for O2 and He, the rate constants are more than a factor of
100 smaller for v=0 than those we measure for v=9. Of

course, the v=0 level cannot undergo vibrational cascade,

which may be a significant removal process for v=9 with

0 2. Also, the v=0 level lies below all other vibrational en-

ergy levels of the other two triplet Herzberg states, eliminat-

ing the possibility of the relaxation via transfer to the triplet

states as might occur in higher vibrational levels. Because of
these differences, a direct comparison may be somewhat

misleading, since these other pathways may be involved in

the removal of the vibrationally excited level. Much faster
rate constants are seen for removal of molecules in vibra-

1 +

tionally excited levels of the other 02 singlet states, b _g

and a lag .25,26Large differences between low and high vi-
brational levels are _een when measurements in the A 3E,+

state from this laboratory 4 and the results for the A 3 +_, state

from Kenner and Ogryzlo t5'27'28 are compared. Difficulties

with the indirect experimental method of Kenner and

Ogryzlo may also account for the difference, l'16

We can also compare the magnitude of the c t_u rate
constants to those for the A 3 +, state, as shown in Table II.

Although the A 3 +_, v=6 level lies at only slightly higher
energy, we find that for 0 2 collisions, the c 1_ v=9 level

relaxes about a factor of 5 slower. While for N 2, the differ-
ence is smaller. For He, no rate constant has been measured
in v=6oftheA 3 +_u state; however, comparing with v=7,
the difference for He is smaller still. An experiment that
examines the removal from v=5 of the A 3 +_u state would

be interesting, since it is nearly isoenergetic with c 1_ u v=9
(AE--90 cm-l), and would allow for a more direct compari-

son of states at similar energies.

These results are extremely important for modeling the

0 2 nightglow on earth. 13'14'16-19 Given the relative abun-

dances of N 2 and O 2 on earth, and the relative rate constants,
N 2 removal will dominate in our atmosphere for c 1_ u v=9.

This relative importance may change at the lower tempera-
ture of the mesosphere, so the temperature dependence will

also be measured for each collider. In this laboratory, signifi-

cantly different temperature dependences in v=9 of the
3 +

A _u state have already been observed for 0 2 and N 2

relaxation. 29 As the c t_ u v=9 vibrational level is at the

TABLE II. Comparison of removal rate constant measurements for O 2 electronic states, a

Knutsen et al. 4
This work Kenner and Ogryzlo 15

Collider c IE_, v=9 c I_, v=0 A 3_+, v=6 A 3 +_,, v=7

0 2 (5.2+-0.6) X 10-12 3× 10 -14 (2.8+0.3)× 10 -ll

N2 (3.2-+0.4)×10 -12 ... (1.4_+0.4)×10 -lj

He (7.5_+0.9)X 10 -_2 6× 10 -15 "'"

(3.5___0.3)× 10 TM

(2.4--- 1.0)× 10-"

(1.4_+0.6)X 10 -H

"Units of cm 3 s- i.
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high end of those levels populated in the earth's atmosphere,

these measurements should be extended to lower vibrational

levels. Overlap with the 2+ 1 ionization of the ground state 18

may limit measurements using the ionization scheme that

was successful here, and a new detection technique may be

required.
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